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Error and attack tolerance of complex networks
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Many complex systems display a surprising degree of toleran ce against er-

rors. For example, relatively simple organisms grow, persi st and reproduce de-

spite drastic pharmaceutical or environmental interventi ons, an error tolerance

attributed to the robustness of the underlying metabolic ne twork [1]. Complex

communication networks [2] display a surprising degree of r obustness: while key

components regularly malfunction, local failures rarely l ead to the loss of the

global information-carrying ability of the network. The st ability of these and

other complex systems is often attributed to the redundant w iring of the func-

tional web de�ned by the systems' components. In this paper w e demonstrate

that error tolerance is not shared by all redundant systems, but it is displayed

only by a class of inhomogeneously wired networks, called sc ale-free networks.

We �nd that scale-free networks, describing a number of syst ems, such as the

World Wide Web (www) [3{5], Internet [6], social networks [7 ] or a cell [8],

display an unexpected degree of robustness, the ability of t heir nodes to com-

municate being una�ected by even unrealistically high fail ure rates. However,

error tolerance comes at a high price: these networks are ext remely vulnerable

to attacks, i.e. to the selection and removal of a few nodes th at play the most

important role in assuring the network's connectivity. Suc h error tolerance and

attack vulnerability are generic properties of communicat ion networks, such as

the Internet or the www, with complex implications on assuri ng information

readiness.
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The increasing availability of topological data on large networks, aided by the computer-

ization of data acquisition, has lead to major advances in our understanding of the generic

aspects of network structure and development [9{16]. The existing empirical and theoretical

results indicate that complex networks can be divided into two major classes based on their

connectivity distribution P(k), giving the probability that a node in the network is connected

to k other nodes. The �rst class of networks is characterized by aP(k) that is peaked at an

averagehki and decays exponentially for largek. The most investigated examples of such

exponential networksare the random graph model of Erd}os and R�enyi [9,10] and thesmall-

world model of Watts and Strogatz [11], both leading to a fairly homogeneous network, in

which each node has approximately the same number of links,k ' h ki . In contrast, results

on the world-wide web (www) [3{5], Internet [6] and other large networks [17{19] indicate

that many systems belong to a class of inhomogeneous networks, referred to asscale-free

networks, for which P(k) decays as a power-law, i.e.P(k) � k�  , free of a characteristic

scale. While the probability that a node has a very large number of connections (k >> hki )

is practically prohibited in exponential networks, highlyconnected nodes are statistically

signi�cant in scale-free networks (see Fig. 1).

We start by investigating the robustness of the two basic network models, the Erd}os-

R�enyi (ER) model [9,10] that produces a network with an exponential tail, and the scale-free

model [17] with a power-law tail. In the ER model we �rst de�ne the N nodes, and then

connect each pair of nodes with probabilityp. This algorithm generates a homogeneous net-

work (Fig. 1), whose connectivity follows a Poisson distribution peaked athki and decaying

exponentially for k >> hki .

The inhomogeneous connectivity distribution of many real networks is reproduced by

the scale-free model [17,18] that incorporates two ingredients common to real networks:

growth and preferential attachment. The model starts withm0 nodes. At every timestept

a new node is introduced, which is connected tom of the the already existing nodes. The

probability � i that the new node is connected to nodei depends on the connectivityki of
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that node, such that � i = ki =
P

j kj . For large t the connectivity distribution is a power-law

following P(k) = 2 m2=k3.

The interconnectedness of a network is described by its diameter d, de�ned as the av-

erage length of the shortest paths between any two nodes in the network. The diameter

characterizes the ability of two nodes to communicate with each other: the smallerd is, the

shorter is the expected path between them. Networks with a very large number of nodes can

have a rather small diameter; for example the diameter of thewww, with over 800 million

nodes [20], is around 19 [3], while social networks with oversix billion individuals are be-

lieved to have a diameter of around six [21]. To properly compare the two network models

we generated networks that have the same number of nodes and links such thatP(k) follows

a Poisson distribution for the exponential, and a power-lawfor the scale-free network.

Error tolerance| To address the networks' error tolerance, we study the changes in the

diameter when a small fractionf of the nodes is removed. The malfunctioning (absence) of

a node in general increases the distance between the remaining nodes, since it can eliminate

some paths that contribute to the system's interconnectedness. Indeed, for the exponential

network the diameter increases monotonically withf (Fig. 2a), thus, despite its redundant

wiring (Fig. 1), it is increasingly di�cult for the remainin g nodes to communicate with

each other. This behavior is rooted in the homogeneity of thenetwork: since all nodes

have approximately the same number of links, they all contribute equally to the network's

diameter, thus the removal of each node causes the same amount of damage. In contrast, we

observe a drastically di�erent and surprising behavior forthe scale-free network (Fig. 2a):

the diameter remains unchanged under an increasing level oferrors. Thus even when as high

as 5% of the nodes fail, the communication between the remaining nodes in the network is

una�ected. This robustness of scale-free networks is rooted in their extremely inhomogeneous

connectivity distribution: since the power-law distribution implies that the majority of nodes

have only a few links, nodes with small connectivity will be selected with much higher

probability, and the removal of these "small" nodes does notalter the path structure of the

remaining nodes, thus has no impact on the overall network topology.
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Attack survivability| An informed agent that attempts to deliberately damage a net-

work, such as designing a drug to kill a bacterium, will not eliminate the nodes randomly, but

will rather target the most connected nodes. To simulate an attack we �rst remove the most

connected node, and continue selecting and removing nodes in the decreasing order of their

connectivity k. Measuring the diameter of an exponential network under attack, we �nd

that, due to the homogeneity of the network, there is no substantial di�erence whether the

nodes are selected randomly or in decreasing order of connectivity (Fig. 2a). On the other

hand, a drastically di�erent behavior is observed for scale-free networks: when the most

connected nodes are eliminated, the diameter of the scale-free network increases rapidly,

doubling its original value if 5% of the nodes are removed. This vulnerability to attacks

is rooted in the inhomogeneity of the connectivity distribution: the connectivity is ensured

by a few highly connected nodes (Fig. 1b), whose removal drastically alters the network's

topology, and decreases the ability of the remaining nodes to communicate with each other.

Network fragmentation| When nodes are removed from a network, clusters of nodes,

whose links to the system disappear, can get cut o� from the main cluster. To better

understand the impact of failures and attacks on the networkstructure, we next investigate

this fragmentation process. We measure the size of the largest cluster, S, shown as a fraction

of the total system size, when a fractionf of the nodes are removed either randomly or in

an attack mode. We �nd that for the exponential network, as weincreasef , S displays a

threshold-like behavior such that forf > f c ' 0:28 we haveS ' 0. A similar behavior is

observed when we monitor the average sizehsi of the isolated clusters (i.e. all the clusters

except the largest one), �nding that hsi increases rapidly untilhsi ' 2 at f c, after which it

decreases tohsi = 1. These results indicate the following breakdown scenario (Fig. 4): For

small f , only single nodes break apart,hsi ' 1, but as f increases, the size of the fragments

that fall o� the main cluster increases, displaying a singular behavior at f c. At f c the system

practically falls apart, the main cluster breaking into small pieces, leading toS ' 0, and

the size of the fragments,hsi , peaks. As we continue to remove nodes (f > f c), we fragment

these isolated clusters, leading to a decreasinghsi . Since the ER model is equivalent to the
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in�nite dimensional percolation [22], the observed threshold behavior is qualitatively similar

to the percolation critical point.

However, the response of a scale-free network to attacks andfailures is rather di�erent

(Fig. 3b). For random failures no threshold for fragmentation is observed, rather the size

of the largest cluster slowly decreases. The fact thathsi ' 1 for most f indicates that

the network is deated by nodes breaking o� one by one, the increasing error level leading

to the isolation of single nodes only, not clusters of nodes. Thus, in contrast with the

catastrophic fragmentation of the exponential network atf c, the scale-free network stays

together as a large cluster for very high values off , providing additional evidence of the

topological stability of these networks under random failures. This behavior is consistent

with the existence of an extremely delayed critical point (Fig. 3), the network falling apart

only after the main cluster has been completely deated. On the other hand, the response

to attack of the scale-free network is similar (but swifter)to the response to attack and

failure of the exponential network (Fig. 3b): at a critical thresholdf sf
c ' 0:18, smaller than

the value f e
c ' 0:28 observed for the exponential network, the system breaks apart, forming

many isolated clusters (Fig. 4).

While great e�orts are being made to design error tolerant and low yield components

for communication systems, little is known about the e�ect of the errors and attacks on

the large-scale connectivity of the network. To demonstrate the impact of our model based

studies to these systems, next we investigate the error and attack tolerance of two networks

of increasing economic and strategic importance: the Internet and the www.

Recently Faloutsoset al. [6] investigated the topological properties of the Internet at the

router and inter-domain level, �nding that the connectivity distribution follows a power-law,

P(k) � k� 2:48. Consequently, we expect that it should display the error tolerance and attack

vulnerability predicted by our study. To test this, we used the latest survey of the Internet

topology, giving the network at the inter-domain (autonomous system) level. Indeed, we �nd

that the diameter of the Internet is una�ected by the random removal of as high as 2:5% of

the nodes (an order of magnitude larger than the failure rate(0:33%) of the Internet routers
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[23]), while if the same percentage of the most connected nodes are eliminated (attack),d

more than triples (Fig. 2b). Similarly, the large connectedcluster persists for high rates of

random node removal, but if nodes are removed in the attack mode, the size of the fragments

that break o� increases rapidly, the critical point appearing at f I
c ' 0:03 (Fig. 3b).

The www forms a huge directed graph whose nodes are documentsand edges are the

URL hyperlinks that point from one document to another, its topology determining the

search engines' ability to locate information on it. The wwwis also a scale-free network: the

probabilities Pout (k) and Pin (k) that a document hask outgoing and incoming links follow a

power-law over several orders of magnitude, i.e.P(k) � k�  , with  in = 2:1 and  out = 2:45

[3,4,24]. Since no complete topological map of the www is available, we limited our study to a

subset of the web containing 325; 729 nodes and 1; 469; 680 links (hki = 4:59) [3]. Despite the

directedness of the links, the response of the system is similar to the undirected networks we

investigated earlier: after a slight initial increase,d remains constant in the case of random

failures, while it increases for attacks (see Fig. 2c). The network survives as a large cluster

under high rates of failure, but the behavior ofhsi indicates that under attack the system

abruptly falls apart at f w
c = 0:067 (Fig. 3c).

In summary, we �nd that scale-free networks display a surprisingly high degree of toler-

ance against random failures, a property not shared by theirexponential counterparts. This

robustness is probably the basis of the error tolerance of many complex systems, ranging

from cells [8] to distributed communication systems. It also explains why, despite frequent

router problems [23], we rarely experience global network outages or, despite the temporary

unavailability of many webpages, our ability to surf and locate information on the web is

una�ected. However, the error tolerance comes at the expense of attack survivability: the

diameter of these networks increases rapidly and they breakinto many isolated fragments

when the most connected nodes are targeted. Such decreased attack survivability is useful

for drug design [8], but it is less encouraging for communication systems, such as the Internet

or the www. While the general wisdom is that attacks on networks with distributed resource

management are less successful, our results indicate that the topological weaknesses of the
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current communication networks, rooted in their inhomogeneous connectivity distribution,

have serious e�ects on their attack survivability, that could be exploited by those seeking to

damage these systems.
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FIGURES

FIG. 1. Visual illustration of the di�erence between an exponential and a scale-free network.
The exponential network a is rather homogeneous, i.e. most nodes have approximately the same
number of links. In contrast, the scale-free networkb is extremely inhomogeneous: while the ma-
jority of the nodes have one or two links, a few nodes have a large number of links, guaranteeing that
the system is fully connected. We colored with red the �ve nodes with the highest number of links,
and with green their �rst neighbors. While in the exponentia l network only 27% of the nodes are
reached by the �ve most connected nodes, in the scale-free network more than 60% are, demonstrat-
ing the key role the connected nodes play in the scale-free network. Note that both networks contain
130 nodes and 215 links (hki = 3 :3). The network visualization was done using thePajek program
for large network analysis< http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajek man.htm> .
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FIG. 2. Changes in the diameter of the network as a function ofthe fraction of the removed
nodes. a, Comparison between the exponential (E) and scale-free (SF) network models, each
containing N = 10; 000 nodes and 20; 000 links (i.e. hki = 4). The blue symbols correspond to
the diameter of the exponential (triangles) and the scale-free (squares) network when a fraction
f of the nodes are removed randomly (error tolerance). Red symbols show the response of the
exponential (diamonds) and the scale-free (circles) networks to attacks, when the most connected
nodes are removed. We determined thef dependence of the diameter for di�erent system sizes
(N = 1 ; 000, 5; 000, 20; 000) and found that the obtained curves, apart from a logarithmic size
correction, overlap with those shown ina, indicating that the results are independent of the size
of the system. Note that the diameter of the unperturbed (f = 0) scale-free network is smaller
than that of the exponential network, indicating that scale -free networks use more e�ciently the
links available to them, generating a more interconnected web. b, The changes in the diameter
of the Internet under random failures (squares) or attacks (circles). We used the topological map
of the Internet, containing 6; 209 nodes and 12; 200 links (hki = 3 :4), collected by the National
Laboratory for Applied Network Research < http://moat.nlanr.net/Routing/rawdata/ > . c, Error
(squares) and attack (circles) survivability of the world-wide web, measured on a sample containing
325; 729 nodes and 1; 498; 353 links [3], such that hki = 4 :59.
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FIG. 3. Network fragmentation under random failures and attacks. The relative size of the
largest cluster S (open symbols) and the average size of the isolated clustershsi (�lled symbols) in
function of the fraction of removed nodesf for the same systems as in Fig. 2. The sizeS is de�ned
as the fraction of nodes contained in the largest cluster (i.e. S = 1 for f = 0). a, Fragmentation of
the exponential network under random failures (squares) and attacks (circles). b, Fragmentation
of the scale-free network under random failures (blue squares) and attacks (red circles). The inset
shows the error tolerance curves for the whole range off , indicating that the main cluster falls
apart only after it has been completely deated. Note that th e behavior of the scale-free network
under errors is consistent with an extremely delayed percolation transition: at unrealistically high
error rates (f max ' 0:75) we do observe a very small peak inhsi (hsmax i ' 1:06) even in the case of
random failures, indicating the existence of a critical point. For a and b we repeated the analysis
for systems of sizesN = 1 ; 000, 5; 000, and 20; 000, �nding that the obtained S and hsi curves
overlap with the one shown here, indicating that the overall clustering scenario and the value of
the critical point is independent of the size of the system. Fragmentation of the Internet ( c) and
www (d), using the topological data described in Fig. 2. The symbols are the same as inb. Note
that hsi in d in the case of attack is shown on a di�erent scale, drawn in theright side of the frame.
While for small f we havehsi ' 1:5, at f w

c = 0 :067 the average fragment size abruptly increases,
peaking at hsmax i ' 60, then decays rapidly. For the attack curve in d we ordered the nodes in
function of the number of outgoing links, kout . Note that while the three studied networks, the
scale-free model, the Internet and the www have di�erent  , hki and clustering coe�cient [11],
their response to attacks and errors is identical. Indeed, we �nd that the di�erence between these
quantities changes onlyf c and the magnitude of d, S and hsi , but not the nature of the response
of these networks to perturbations.
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FIG. 4. Summary of the response of a network to failures or attacks. The insets show the
cluster size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a-c) or attacks (d-f). Upper panel: Exponential networks
under random failures and attacks and scale-free networks under attacks behave similarly: for small
f clusters of di�erent sizes break down, while there is still alarge cluster. This is supported by the
cluster size distribution: while we see a few fragments of sizes between 1 and 16, there is a large
cluster of size 9; 000 (the size of the original system being 10; 000). At a critical f c (see Fig. 3) the
network breaks into small fragments between sizes 1 and 100 (b) and the large cluster disappears.
At even higher f (c) the clusters are further fragmented into single nodes or clusters of size two.
Lower panel: Scale-free networks follow a di�erent scenario under random failures: The size of
the largest cluster decreases slowly as �rst single nodes, then small clusters break o�. Indeed, at
f = 0 :05 only single and double nodes break o� (d). At f = 0 :18, when under attack the network
is fragmented (b), under failures the large cluster of size 8; 000 coexists with isolated clusters of
size 1 through 5 (e). Even for unrealistically high error rate of f = 0 :45 the large cluster persists,
the size of the broken-o� fragments not exceeding 11 (f).
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